
ECE 3084A Lab 3: Motor Velocity Control 

 

Date Lab Performed: 

Name/Section of Partner 1: 

Name/Section of Partner 2: 

Name/Section of Partner 3: 

Name/Section of Partner 4: 

Goals: 

1. Investigate P, PI, and PID speed control for a DC motor.

2. Observe tracking performance for time-varying references.

3. Determine appropriate gains to achieve given best system performance.

4. Understand trade-o s between various system performance parameters like
tracking, stability, oscillation, etc.

5. Observe and understand how a real system deviates from an ideal mathematical model.

Preparation: 

To perform this lab, you must download and install software. WARNING!!! This pro-
cess can take a long time (1 hour or more depending on your download speed). 

PC Users 

1. You should already have the Elvis suite installed, which has the myDAQ drivers. If

it isn't, or if it isn't the latest version, you must install it from the following link:

http://www.ni.com/download/ni-elvismx-14.0/4801/en/.

It is over 1.4 GBytes, and takes a really long time (1-2 hours depending on your
connection speed). Try the rest of the installation before doing this!

2. Install the Runtime Engine (much smaller) from:

http://www.ni.com/download/labview-run-time-engine-2014/4887/en/.

3. Download the zip le \MotorControl-PC.zip" from T-Square (under Lab 3 in Re-
sources), and extract the le \Spring15 MotorControlsLab.exe". 
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Mac Users 
 

1. myDAQ driver only: http://www.ni.com/gate/gb/GB_EVALDAQMXMYDAQ/US 
 

2. Runtime Engine: http://www.ni.com/download/labview-run-time-engine-

2014/4894/en/ 
 

3. Download the zip le \MotorControl-MAC.zip" from T-Square (under Lab 3 in Re-
sources), and extract the application \Spring15 MotorControlsLab".  

 
After you have downloaded all software and rebooted your computer, it is critical that 
you do the following before you come to class: 
 

1. Plug your myDAQ into your computer. 
 

2. Run the executable (application) \Spring15 MotorControlsLab". 
 

3. Verify that you get the startup screen shown in Figure 1 with no error messages. 
 

4. Verify that you can start it using the small white arrow on top without getting an 
"Invalid Device" error (use the \Stop" button so you can close the GUI).  

 
Also, carefully read through the entire lab in advance. Bring a printout of the lab to 

class with your laptop.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Screenshot of the VI after startup. 
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Background: 

 

This lab demonstrates basic controller design for velocity control of a DC motor. We are 

going to use the LabVIEW myDAQ equipment to control the angular velocity of the motor 

via a custom LabVIEW program. The motor is controlled using Pulse Width Modulation 

(PWM). There are two digital command signals: one is the direction (clockwise or counter 

clockwise) and the other is the pulse-width modulated signal that controls how much power 

the motor uses. The frequency of this PWM signal is constant, but the larger the duty cycle 

(percentage of time it is non-zero), the faster the motor turns (a 50% duty cycle means that 

it is \on" half of the time). We will make the approximation that the PWM duty cycle is 

directly proportional to the motor speed. This is one reason our open loop controller doesn't 

work very well (it is actually non-linear), but using feedback, we can overcome this and 

other modeling errors. The position of the motor shaft is measured using an incremental 

encoder, and the velocity is derived from the position in software.  
In the time domain, we have: 

 

1. The dynamics of the motor (the plant) that relate the input x(t) to othe output y(t), 
usually via a di erential equation (Eq. 1). 

 
2. The relationship between the measured output (the angle of the motor) y(t) and 

the value we will use for feedback (angular velocity) y (Eq. 2). 
 

3. An error signal e(t) { how close the actual motor velocity is to the desired velocity 
r(t) at each time point (Eq. 3). 

 
4. A controller (control function) to generate the input x(t) to the motor based upon 

the error e(t) (Eq. 4).  
 
 

 

y• = f(u; y) (1) 

y = 
dy(t)  

(2) 
dt   

e(t) = r(t)  y(t) (3) 

Z t  

x(t) = Kpe(t) + Ki     e( )d  + Kde(t) (4) 
0     

 

The overall goal of the lab is to choose Kp, Ki, and Kd (the gains) such that system 
performance speci cations are successfully met. 
 

It is useful to view Eqs. 1-4 in the Laplace domain so that we can draw a block 
diagram to describe the setup. Taking the Laplace transform of each equation, we can 
de ne three transfer functions corresponding to the three blocks in the diagram: 
 

1. Between the error signal and the plant input (the controller), Gc(s). 
 

2. Between the input and the output (the plant), Gp(s). 
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3. Between the output (shaft angular position) and the shaft angular velocity (the 

tachome-ter), T (s). 
 

 

r(t) +   e(t) 
Gc(s) 

x(t) 
Gp(s) 

y(t) 
        

 

 

   

       
 

y(t)  

 

T (s) 
 

 

Because the plant output y(t) (the shaft angular position) is inherently noisy, we have 
added a low pass lter to the di erentiator to smooth the approximation of the motor's 
angular velocity, 

T (s) = s 
as

+a; 
  

making this block a ltered di erentiator. For this setup we have a = 15.  
Note that 

X(s) = Gc(s)E(s) 
 

where 

Gc(s) = Kp + 
K

s
i + Kds: 

  

In discrete time, this controller is implemented in LabView software by the myDAQ as 
 

k 
X 

x[k] = Kpe[k] + Ki e[k]dT + Kd  
0 

 

where k is a discrete representation for time and dT 
dT = 0:01 sec. 

 

e[k] e[k 1]  
 

dT 

 

is the width of our time step. Here 

 

Experiment: 

 

Figure 2 shows the overall setup of the myDAQ, the printed circuit board (PCB) with 

attached motor, and the battery pack. Figure 3 shows where the terminals where the battery 

pack is connected. PC users can verify that your computer is seeing the myDAQ by starting 

the NI ELVIS Instrument launcher and opening the scope. You should see static. 

 

1. Referring to Figures 2 and 3, plug the terminal strip type connector on the PCB into your 

myDAQ by aligning the outer edge pins. Then plug in the battery pack, making sure that 

you have the correct polarization. If you are unsure, the LED located near the bottom of 

the board should immediately blink once when unplugging the battery pack if it was 

plugged in correctly. Plugging it in the wrong way will not do immediate damage, but could 

damage the polarized capacitors in left plugged in for many minutes. 
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Figure 2: Overall setup of the myDAQ and motor controller.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Closeup showing connection of the battery pack. 
 

 

2. Run the NI executable (application), Spring15 MotorControlsLab, that you down-

loaded from T-Square. Start the VI using the little white arrow at the top of the 

GUI. Select a device from the pull down menu and then make sure the \Invalid De-
vice" LED is not lit up. The screen shot of Figure 1 should be similar to what you 

see. Use the big red \Stop" button to stop the VI, which will let you then close it. 

The \Stop" button also resets the myDAQ bu ers, and is a good thing to do if the 
GUI does not seem to be working properly. 

 
3. In the large plot, the reference r[n] is the red signal and the measured velocity of the 

motor is the white one. This plot has a cursor that you may use to mark the reference 

and compare the behavior of di erent gains. The other two plots show the input signal 

x[n] (left) and the error e[n] (right). The error plot also has a cursor, which may be  
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helpful to keep near (0,0) so that you can see how well you're tracking the reference. 

To the left of the plots, specify the parameters of your reference signal (it can be a 

constant value, sine wave, or square wave). The \PID?" button allows you to toggle 

between open loop (light is o ) and closed loop (light is on) using the PID controller 

with the gains you've selected. Note that for open loop control, the reference signal is 

directly input to the plant; i.e., x(t) = r(t), and there is no feedback. 
 

4. To get started, make sure the reference type is set to \Constant" (reference is a 

constant amplitude) and the PID light is o . We will now calibrate the feedback signal 

to your speci c setup. Gradually increase the amplitude slider (right one) until the 

motor starts to move; you are setting the reference (red) signal. You should now see 

the white trace (actual velocity) start to change. Note the direction of its change. If it is 

changing in the opposite direction of the reference (red) signal, as shown in Figure 4, 

turn on the \Invert Dir" button to ip the sign. This will ensure that the directions of both 

the desired velocity and actual velocity are the same. Now gradually increase the 

amplitude slider to a little less than 100%. You should see another slider in yellow 

labeled \Vel Adjust". Adjust this slider until both the reference signal and the estimated 

velocity signal are approximately the same as shown in Figure 5. This allows the 

measured signal to stay within the PWM range. Make sure you can get your motor to 

move in both directions with a reasonable velocity signal before proceeding. (Ask for 

help if you can't get it to work.) You have just tuned the open loop controller by making 

the output track the input (without feedback).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Screenshot showing inverted direction. 
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Figure 5: Screenshot showing velocity adjustment. 
 

 

5. Further investigate the open loop behavior of the system for di erent reference inputs. 

For all of them, change the amplitude. For the sine and square reference types, you 

can also change Omega (frequency); start with Omega = 0.5. Record your 

observations below. How well does the velocity match the reference? Note that a 

square wave is essentially a step function if the period is long (small Omega). 
 

(a) Constant 
 
 
 
 
 
 

(b) Sine wave 
 
 
 
 
 
 

(c) Square wave 
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Veri cation #1: Have a lab instructor verify your observations on the pre-vious 
page and open loop operation with a square wave reference by signing below: 

 
 
 
 

 

Instructor Signature: Time:  
 
 

 

6. Set the amplitude back to zero and turn on feedback with the PID button (the light 

should go on). Initially set Kp = 2, Ki = 0 and Kd = 0, and set the reference type to  
a square wave with Omega = 1. Gradually increase the amplitude to near 100%. 
Your signals should look something like those in Figure 6. You may have to 

change Kp, but keep Ki = 0 and Kd = 0. Do not proceed if your signals don't look 
similar to those of Figure 6 (ask for help).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6: Screenshot of the VI with proportional control. 

 

7. Now change the reference type to a constant while keeping Ki = 0 and Kd = 0. 

Move the amplitude up and down. Your velocity should also move up and down 
but the error will not be zero (remember, a \P" controller can't provide an input to 
the plant with zero error). 
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8. With the amplitude non-zero (bigger than 50 is good), change Ki to 1. Watch the 

error plot in the lower right as the integral control kicks in and reduces the error. 
Switch back to a square wave and see how the system performs. 

 

9. Now play around with di erent values for Kp and Ki (keep Kd = 0 at rst) to get more 

of a feel for what they do. It is best to initially use a square reference input at a 
lower frequency (Omega < 1) so the motor has time to reach steady state. 

 

10. Find good1 gains. Here are some guidelines: 
 

(a) Start with the proportional term. You won't be able to get rid of steady-state 
error, but you should see the velocity somewhat mimic the basic shape of the  
reference without maxing out the control signal x[n] (which goes from -100 to 

100). Increasing Kp should decrease the steady state error but increases 
oscillations when the amplitude changes. 

 
(b) Move on to the integral term. This should get rid of steady state error without 

introducing too many oscillations (happens if Ki is too big). Try to balance Kp 

and Ki to get the best performance. 
 

(c) Add a tinyyy bit of derivative term. Do you see what happens with too much? 

You may be able to increase Kp and Ki after you add a little Kd. 
 

The real world can be kind of messy! Use your judgment as you tune the gains. 
For a constant reference input of 80, see how low you can keep e[n]. What is  
jx[n]j? This represents the magnitude of the control e ort (smaller is better), 
and it should not be saturated (i.e., hit 100%). 

 
(d) Brie y summarize your observations regarding the main e ects of Kp, Ki and Kd 

for this system and record your minimum e[n].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1
Note that there are not 3 unique values that work! Everyone will have a di erent answer here; do not ask if 

yours is \right." The point is to make observations, to see how di erent gains produce di erent closed-loop 
behavior, and to understand the tradeo s associated with increasing/decreasing each of the three gains. 
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Veri cation #2: Have a lab instructor verify your observations on the pre-vious 
page and closed loop operation with constant, square and sine wave reference 
signals by signing below: 

 
 
 

 

Instructor Signature: Time:  
 
 
 
 

11. For your tuned motor controller, evaluate performance as a function of frequency 
(Omega) for a sine wave reference. How well do the amplitude and phase track 
the reference? Summarize your observations below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

12. You have probably noticed that the motor velocity is not proportional to the control 

signal (i.e., it is non-linear). This problem is particularly apparent around zero in that 

the motor doesn't move if the control signal is too small. Enable the slider \Threshold  
Adj", which sets a threshold for the control signal; i.e., it forces jx(t)j to always be 
greater than this value. Set this adjustment to give the best performance of your 
motor for a sinusoidal reference. How e ective is this threshold in overcoming this 
problem? Does it do better for some frequencies than others? 
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